CHECK YOUR ANSWERS:

8.1 \#5-10, 12,14

\#9-10 graph, label coordinates next to each point

CHECK YOUR ANSWERS:

$\left(2-\frac{5 \pi}{4}\right)$
$\left(-2,-\frac{\pi}{4}\right)$
$\left(-2,-\frac{7 \pi}{4}\right.$
\#14 plot point, label given coordinates, then list three other possible coordinates for the same point where $-2 \pi \leq \theta \leq 2 \pi$

$\left(-2, \frac{5 \pi}{3}\right)$
($2, \frac{2 \pi}{3}$)
(2- $\frac{-4 \pi}{3}$)
over \rightarrow
8.1 \#17-22: write given coordinates, then identify point

Review of Unit Circle and Complex Numbers (see notes 1.0)

1. Complex numbers (show work on a separate sheet of paper!)
A. $(2-3 \mathrm{i})(7-4 \mathrm{i})$
B. $(1+4 \mathrm{i})^{2}$
C. $(2-3 \mathrm{i})+(7-4 \mathrm{i})$
D. $(2-3 \mathrm{i})-(7-4 \mathrm{i})$
E. $\frac{2+i}{1+2 i}$ (hint: use conjugate)
F. $\frac{3-2 i}{-4-i}$ (hint: use conjugate)

\[

\]

2. Label all radian values AND coordinates of each given terminal point.
(You will need to have this information memorized again for the ch. 8 test!)

To find a unique solution for $\operatorname{Sin} \theta$ and $\operatorname{Tan} \theta$, refer only to Quadrant or
To find a unique solution for $\operatorname{Cos} \theta$, refer only to Quadrant

3. Evaluate using the unit circle. Use pringipalvalues when finding the inverse, $0 \leq \theta<2 \pi$. No calculator!
A. $\operatorname{Arcsin}\left(-\frac{\sqrt{2}}{2}\right)\left(\frac{7 \pi}{4}\right)$
hint: rewrite as $\sin \theta$
$\frac{6 \sqrt{2}}{2}$
B. $\operatorname{Arctan}(1)$
$\frac{\pi}{4}$
C. $\cos ^{-1} 0 \frac{\pi}{2}$
D. $\sin \left(\frac{13 \pi}{6}\right) \frac{1}{2}$
E. $\cot \left(-\frac{5 \pi}{3}\right) \sqrt{\frac{\sqrt{3}}{3}}$
F. $\sin [\operatorname{Arctan}(-\sqrt{3})]$
G. $\cot \left(\operatorname{Cos}^{-1}(-1)+\operatorname{Sin}^{-1} \frac{1}{2}\right)$
$\sin \frac{5 \pi}{3}=-\frac{\sqrt{3}}{2}$

$$
\begin{aligned}
& \cot \left(\pi+\frac{\pi}{6}\right) \\
& \cot \left(\frac{7 \pi}{6}\right)=(\sqrt{3})
\end{aligned}
$$

Reminder from 8.1

 $(r, \theta) \rightarrow(x, y)$Conversion from Polar Coordinates to Rectangular Coordinates

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

Conversion from Rectangular Coordinates to Polar Coordinates

These relationships can also be used to convert equations to polar and rectangular form

$$
r=\sqrt{x^{2}+y^{2}} \quad \text { or } \quad r^{2}=x^{2}+y^{2}
$$

$\tan \theta=\frac{y}{x} \quad(x \neq 0)$

EXAMPLE:

Convert the equation to polar form.

Note: The equation $x^{2}+y^{2}=81$ on a rectangular grid produces the same shape as $\mathrm{r}=9$ on a polar grid.
(Both are circles.)

EXAMPLE:

Convert the equation to polar form.

EXAMPLE:

Convert the polar equation to rectangular form.

(coordinates)

$$
\text { C. } r=12
$$

substitute

$$
\sqrt{x^{2}+y^{2}}=12 \begin{gathered}
\text { Square both sides. The } \\
\text { goal is to get } x= \\
\text { or } y=\text { form. }
\end{gathered}
$$ combination of x and y.

$$
x^{2}+y^{2}=144
$$

Basically, r and θ both need to be eliminated.

Our math book uses both terms. Technically we are getting a new form of the equation, not coordinates!

EXAMPLE:

Convert the polar equation to rectangular form.

D. $r=12 \sec \theta$
divide both sides
by $\sec \theta$ since there aren't any equations that involve sec θ

Our math book uses both terms.
Technically we are getting a new form of the equation, not coordinates!

$$
x=12
$$

Rewrite $\sec \theta$

```
r\operatorname{cos}0=12
```

Now substitute using reciprocal
identity

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& r=\sqrt{x^{2}+y^{2}} \\
& r^{2}=x^{2}+y^{2} \\
& \tan \theta=\frac{y}{x} \quad(x \neq 0)
\end{aligned}
$$

Example 1:

Polar Coordinates to Rectangular Coordinates Find the
rectangular coordinates for the point whose polar coordinates are given.
$(6,2 \pi / 3)$

Example 2:

- Rectangular Coordinates to Polar Coordinates

Convert the rectangular coordinates to polar coordinates with $r>0$ and $0 \leq \theta<2 \pi$.
$(3 \sqrt{3},-3)$
See 8.1 video under "Classwork" tab in Google Classro Example \#1 and \#2 solutions for Example \#1 and

